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Abstract--The steady-state two-dimensional flow which takes place in a half space of two-phase 
suspension bounded by an infinite stretching sheet is investigated. This problem is used as a vehicle for 
the study of certain aspects of two-phase stagnation-point flow. Attention is focused on the singularity 
in the particle-phase density distribution in the vicinity of the stagnation point predicted by certain existing 
theories. It is found that the inclusion of a particle-phase pressure gradient in the governing equations 
eliminates singular behavior in the particle-phase density distribution and makes possible the calculation 
of stagnation-point solutions throughout the entire range of inverse Stokes numbers. 
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I N T R O D U C T I O N  

Two-phase particulate-suspension flows containing fluid-phase stagnation points occur whenever 
a blunt solid body is immersed in a two-phase stream. Flow fields of this kind are of interest in 
connection with applications involving dust-collection equipment, gas masks, turbine-blade 
erosion, missile-radome erosion and aircraft icing. In addition, stagnation-point flow is a basic 
problem in fluid mechanics and, for this reason, is of intrinsic interest. 

Many types of flow fields contain stagnation points. This paper is concerned with one of these, 
namely the two-dimensional flow which takes place in a half space of suspension bounded by an 
infinite sheet stretching parallel to itself in such a way that the speed of any point is directly 
proportional to the distance of that point from the one fixed line in the sheet. While this problem 
has no direct relevance to the applications discussed above, it is felt (for reasons to be explained 
later) that it is a useful model problem for the investigation of two-phase stagnation-point 
phenomena. A more detailed discussion of the problem under consideration herein is greatly 
facilitated by access to the governing equations. For this reason such discussion will be deferred 
to the next section. 

GOVERNING EQUATIONS 

Consider the steady flow of a two-phase fluid-particle suspension. The mass-balance equations 
for the two phases can be written in the forms 

V.((1 - ~)v¢) = 0 [la] 

and 

V'(~Va) = 0, [lb] 

where V is gradient operator, vc is the fluid-phase (continuous-phase) velocity, Va is the particle- 
phase (dispersed-phase) velocity, and ~ = ~a is the particle-phase volume fraction (the fluid-phase 
volume fraction being ac = 1 - ~ ) .  The linear-momentum-balance equations can be written 
(neglecting gravity) in the forms 

pc(1 - ~)vc'Vvc = - V((I - a)p~) + V.((I - a)a¢) - f [2a] 

and 

pdO~Yd" VY d -~ -- V(n'pd ) "+- V" (O~ad) -~- f, [2b] 

where Pc is the fluid density, Pa is the particle density, Pc is the fluid-phase pressure, Pd is the 
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particle-phase pressure, ac is the fluid-phase extra-stress tensor, ad is the particle-phase extra-stress 
tensor and f is the interphase force per unit volume. 

It is desired to concentrate herein on situations involving small volume fractions (ct ,¢ 1). The 
dusty-gas equations [see, for instance, Marble (1970)] are normally used for this purpose. In the 
present work a slight generalization of the dusty-gas equations will be employed. This gener- 
alization is most easily achieved by supplementing the balance laws by the assumption ~t ,~ 1 and 
the constitutive equations 

and 

Pd = Pc = P, [3a] 

trc =/a~(Vv~ + VvcX), [3b] 

tr d = 0 [3c1 

f = pdNa(v c -- Vd) -4-pVot, [3d] 

where/ac is the fluid dynamic viscosity and N is an interphase momentum-transfer coefficient (both 
assumed constant in the present work). In writing [3a~i] it is assumed that a single-pressure model 
is adequate, that the fluid-phase extra stress follows Newton's law of viscosity, that the 
particle-phase extra stress is negligible and that the interphase force can be treated as a 
superposition of steady-state drag (first term) and buoyancy (second term). Substitution of [3a-d] 
into [1 a, b] and [2a, b] and the use of the assumption ~t ,~ 1 results in the following set of equations: 

V .v~ = 0, [4a] 

Vc.Vvc --- 
Pc \ p c /  

V" (ct va) = 0 [4c] 

and 

vd'Vvd = __Vp + N(vc -- vd), [4d] 
Pd 

where vc = #c/Pc is the fluid kinematic viscosity. 
It will be convenient to nondimensionalize [4a-d] using a characteristic length L, a characteristic 

velocity V and a characteristic volume fraction A. Substituting 

V = V/L,  [5a] 
$ 

Vc = VL, [5b] 

vd = VSd, [5c] 

p = pc v2~ [5c1 
and 

ct = A~t [5d] 

into [4a-d] (asterisks denoting dimensionless quantities) and dropping the asterisks from the final 
results for simplicity yields the dimensionless equations 

V. v~ = O, [6a] 

V2Vc 
v¢'Vvc = - V p  +- -~-  + s:),a(vd- re), [6b] 

V" (~ Vd) = 0 [6C1 
and 

V d "Vv  d = - -  E V p  + ,~ (v c - v d) ,  [6d] 
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where 

and 

VL 
R = [7a] 

Vc ' 

Pc [7b] 
Pd 

Apd A [7c] 
Pc E 

NL 
2 = V [7d] 

are the Reynolds number, the density ratio, the particle loading and the inverse Stokes number, 
respectively. Two special cases of  [6a-d] will be of interest in the present work. They will be 
discussed next. To distinguish the complete equations [6a-d] from the following special cases, [6a-d] 
will be called the modified dusty-gas equations. 

If E is formally equated to zero in [6a-d] one obtains the equation set 

V-v¢ = 0, 

V2v¢ 
v¢'Vv¢ = --Vp +---~- + x2~x(v d -- Vc) , 

and 

v.(~v~)=o 

[8a] 

[8b] 

[8c] 

and 
V'(~Vd) = 0 

R , 

v d • Vv d = 2 (v~ - Vd)- [9d] 

Equations [9a, b] are recognized as the usual Navier-Stokes equations for a Newtonian fluid. Thus, 
to the order of approximation inherent in [9a-d], the presence of particles does not affect the motion 
of the fluid. The fluid motion can be found first and then [9c, d] can be solved to find the particle 
motion and volume-fraction distribution associated with the known fluid flow field. Equation [gd] 
is solved first to find the particle-phase velocity field and then [9c] is solved to find the particle-phase 
volume-fraction distribution. In the present paper [9a-d] will be called the dilute dusty-gas 
equations. 

Before continuing, some brief comments on the physical meanings of the limiting cases discussed 
above are in order. Naturally none of the quantities E, x and A can ever be exactly zero. The 
dusty-gas equations are meant to describe situations in which c is small, and, in addition, A is small 
but x = A/E is finite. Thus the particle-to-fluid density ratio is large but the reference volume 
fraction is small enough to render the particle loading finite. For a fixed particle-to-fluid density 
ratio it is obvious that a sufficiently small reference volume fraction will make the particle loading 
small. This is the situation which the dilute dusty-gas equations are intended to model. One would 
expect the dusty-gas model to acurately describe suspensions of solid particles or liquid drops in 
gases as long as the volume fraction is small. The present paper provides an interesting example 
of a situation in which a small term (the term multiplied by E in [6d]) has an important qualitative 
effect on predictions. 

A variety of investigators have applied equations equivalent to [9a-d] (often with [9d] written 
in Lagrangian form) to stagnation-point problems. [For an early example see Taylor (1940).] A 

[9a] 

[9b] 

[9c] 

vd" VVd = 2 (re -- v d). [8d] 

These are the dusty-gas equations discussed by Marble (1970) and employed in a variety of  previous 
investigations. If, in addition, x is formally equated to zero one has 

V'v c = O, 

V2Vc 
Vc" Vv~ = -- Vp + - -  
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general result of these investigations, independent of specific geometry, is that above a certain 
critical value of/l  particles do not strike the body surface in the vicinity of the stagnation point. 
Most work has concentrated on the solution of [9d]. Recently, solutions of [9c] have been obtained 
and it has been pointed out by such investigators as Michael (1968), Peddieson (1973, 1976), De 
la Mora & Rosner (1981) and De la Mora (1982), that as 2 approaches the critical value • at the 
wall becomes increasingly large and, in fact, is predicted to be infinite for 2 greater than or equal 
to the critical value. In fact, of course, ~ cannot exceed ~max < 1, the maximum value for which 
fluid-like behavior would be exhibited. This suggests that it is not possible to employ [9a--d] for 
the solution of stagnation-point problems. The purpose of the present work is to investigate this 
matter through the application of [6a--d] and [8a--d] to the geometry described at the beginning of 
this section. 

For this geometry an exact reduction to ordinary differential equations is possible [similar to the 
reductions employed by Zung (1969) and Ungarish & Greenspan (1983) in their work on two-phase 
flow near a rotating disk], the boundary conditions far from the sheet can be stated unambiguously, 
and a closed-form solution for the corresponding single-phase problem has been reported by Crane 
(1970). All of the above features make this a useful model problem for the investigation of 
two-phase stagnation-point flow. 

The most important practical applications involving stagnation points occur in areas such as dust 
collection and rain erosion and concern flows past blunt bodies. The application of the dilute 
dusty-gas equations to these situations is inhibited by the existence of the singularity in the 
dust-phase volume fraction referred to previously. It is desired herein to investigate whether the 
use of more sophisticated governing equations can eliminate this singularity. To directly apply 
[6a~d] to blunt-body problems would require the solution of several coupled partial differential 
equations and, thus, a large amount of numerical work. A boundary-layer approach (which would 
allow a boundary-layer stagnation-point problem to be formulated in terms of ordinary differential 
equations) would not be effective because the determination of the inviscid flow (which is not 
irrotational) would still require the numerical solution of several coupled partial differential 
equations. The case of flow against an infinite stationary plane suggests itself as a useful model 
problem because an exact reduction to ordinary differential equations is possible (De la Mora & 
Rosner 1981; De la Mora 1982) but the solution thus obtained is a local one and this creates 
ambiguities when it comes to formulating the boundary conditions far from the plane. (It should 
be pointed out that some of the difficulties mentioned above do not exist for x = 0, but it was 
specifically desired to investigate the case of x ~ 0 in this work.) It is for these reasons that the 
stretching-sheet geometry was chosen as the most suitable model problem for this investigation of 
the structure of the governing equations for particulate suspensions exhibiting small volume 
fractions. 

To reduce [6a--d] to ordinary differential equations the following transformations are used (with 
ex and ey being unit vectors associated with the x- and y-directions, respectively): 

/ v X~ l/2 
L = ~ a )  ' V = ( v c a ) l / 2 '  [10a, b] 

A = ~ ,  x = ¢ ,  y = r / ,  [10c-e] 

vc = ex~Fc(t/) + eyG~(r/), [10f] 

Vd = ex~Fd(r/) + eyGd(r/), [lOg] 

p = H(r/) and ~ = Qd(r/), [1Oh, i] 

where ~ is the volume fraction far from the sheet and a is the ratio of the velocity of a point on 
the sheet to its distance from the origin. Substituting [10a-i] into [6a-d] results in 

G~ + Fc = 0, [1 la] 

F'[ - -  GcF~ --  F 2 + XAQd(Fd -- Fc) = O, [1 lb] 

H '  = G "  - GcGc + XAQd(Gd --  Gc), [1 lc] 

(GdQd)' + FdQd = O, [I Id] 
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GdF'd -t- F 2 + ~.(F d - Fc) -- 0 [1 le] 

and 

GdG'a + 2(Gd -- G~) = - EH' [1 If] 

where a prime denotes differentiation with respect to r/. By rewriting [1 l a g ]  as seven first-order 
differential equations (shown in the appendix) it can be shown that [1 l a g ]  is a seventh-order 
differential system. Seven appropriate boundary conditions are 

F c (0) = l, Gc (0) = 0, [ 12a, b] 

Fc( t / )~0,  Fd(r/)---~0, Gd (r/ ) --* G¢ (r/ ), Qd( r / )~ l ,  H(rl )~O as q - - . ~ ,  [12c-g] 

where it has been assumed that the two phases are in equilibrium far from the sheet. It should be 
recognized that Qd can be thought of  as either a dimensionless particle-phase volume fraction or 
a dimensionless particle-phase in-suspension density. To be consistent with the terminology 
normally used in the literature in connection with the dusty-gas equations, Qd will be hereafter 
referred to as a density. 

In the next section an approximate closed-form solution of  the dilute dusty-gas equations is 
found which illustrates the singularity discussed earlier in the context of  the geometry chosen for 
the present investigation. Subsequent to that, numerical work is used to demonstrate that this 
singularity appears to be a feature of  the dusty-gas model but not of  the modified dusty-gas model 
associated with the exact form of [1 l a g ] .  

A P P R O X I M A T E  C L O S E D - F O R M  S O L U T I O N  

To motivate what follows consider [1 If] evaluated at the sheet (r /= 0). This equation has the 
FOFITI 

Gd (0) (G~(0) + 2) = - EH'(0). [13] 

If  E = 0, this equation is satisfied by either 

Gd(0) = 0 [14a] 

or 

G~(0) = - ft. [14b] 

As will be shown subsequently, the singularity in the particle-phase density at the sheet appears 
to be associated with condition [14a]. It is clear that ifE # 0, [14a] does not satisfy [13]. This suggests 
that the inclusion of  the pressure-gradient term in [1 If] may eliminate this singularity. The form 
of [13] is independent of  the value of  x. This indicates that the existence of  the singularity will not 
be affected by changes in r. Both of  these conjectures will be verified by later numerical work. 

For the special case of  x = 0 [1 la-c], governing the fluid-phase behavior, are uncoupled from 
[! ld-f],  governing the particle-phase behavior, and can be solved separately. Crane (1970) noticed 
that the solution of  [1 la, b] is 

F¢=exp( -~ / ) ,  G¢= - 1  + e x p ( - r / ) .  [15a, b] 

This solution can be used to illustrate some important features of  the particle-phase behavior near 
the wall (r/,~ 1). Attention will be confined to the case of  x = 0 in the following discussion so that 
this closed-form solution can be used. 

Expending [15a, b] for small r /and keeping only the first terms yields 

F c -  1, G c - - ~ / .  [16a, b] 

To find a solution to [1 ld-f]  valid for r/,~ 1, it will be assumed that 

Fd=Cl, Gd=-- C2ff, Qd=-~e. [17a--c] 

M.F. 14/~-H 
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Substituting [17a-c] into [lie, f] yields 

C1 = 

and 

- 2  __ (22 + 42) 1/z 
[ 18a] 

2 + (2 z - 42) 1/2 [18b] 
Cz-  2 

As 2 --* ~ ,  CI and C2 must approach unity (equilibrium flow). Thus the positive sign in [18a] and 
the negative sign in [18b] must be selected to obtain 

4"~1/2 - -  1] 

C l -  2 

and 

2 [19b] 

Since C2 must be real, it can be seen that this solution exists only for 2 t> 4. 
The analysis given above has determined the conditions (2 >t 4) for which a solution satisfying 

[14a] is possible. Because the solution obtained through this analysis is purely local (in the vicinity 
of the sheet) there is no guarantee that a solution in the entire flow field which satisfies the boundary 
conditions at infinity can be found which will approach this local solution. For this particular 
problem, numerical solutions (see the next section) of [1 If] (with c = 0) using [15b] to represent 
Gc show that for 2 1> 4, Gd(0) = 0. They further show that for 2 < 4 Gd(0) 4:0 and G~(0) = - 2. 
Thus, transition from condition [14a] to condition [14b] occurs at 2 = 4. This is consistent with 
the local analysis but not proved by it. The sheet collects particles only below the critical value 
2,  = 4. This is typical of stagnation-point flows with the value of 2,  depending on the body 
geometry and the assumed representation of the fluid-phase flow field [see, for instance, De la Mora 
(1982)]. 

Substitution of [17a-c] and [19a, b] into [1 ld] results in 

1 + ~ )  --1 

e = 1 -- [20] 

I 1 ( '  
A check will show that for 2 I> 4, 0 ~ e ~< 2 - x//2 = 0.586. Thus the solution for the particle-phase 
density possesses a singularity at q = 0. Again, this result is based on an approximate solution, but 
numerical solutions of [1 ld] appear to verify it (see the next section). This singularity was not 
noticed in early work on stagnation-point flows because the particle-phase density was not 
calculated. 

As mentioned previously, all of the work discussed above is limited to the case of x = 0 in order 
to utilize [15a, b]. Presumably the local analysis could be extended to arbitrary values of ~ but, 
because of the limitations of such analysis, it does not seem worth while to do so. 

N U M E R I C A L  RESULTS AND DISCUSSION 

Equations [1 l a g ]  were solved numerically subject to [12a-g] by an iterative, variable-step-size, 
finite-difference technique. Three different versions of the method (corresponding to alternate ways 
of differencing some of the equations) were employed. It was found that all versions produced the 
same results. Much smaller step sizes were needed in the vicinity of the sheet to obtain accurate 
solutions of the two-phase equations than were required to solve the corresponding single-phase 
equations. This was the reason for employing a variable step size with the smallest step located 
at the sheet and the step size gradually increasing away from the sheet. For the sake of brevity 
the details of the numerical approach are omitted. 
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Numerical solutions of the dilute dusty-gas equations (x = E = 0) were obtained first. The 
solutions of [l la, b] were compared to [15a, b] to verify the numerical work. Agreement between 
the exact and numerical solutions was found to be excellent. Solutions of the particle-phase 
equations showed that the particle-phase density at the sheet became increasingly large as 2 was 
increased. It was found that for 2 < 4 it was always possible to use a small enough step size so 
that Qd (0) became independent of the step size. For 3. > 4, on the other hand, no such minimum 
step size could be found. That is, when a series of runs using successively smaller step sizes was 
made, reduction of the step size resulted in continuous growth of the particle-phase density at the 
sheet with the solution never becoming independent of the step size. This suggests that the 
particle-phase density is singular at the sheet, as was predicted by the approximate analytical 
solution. 

Next the dusty-gas equations (E = 0) were numerically solved to determine whether they also 
exhibited singular behavior. No difficulty was encountered in obtaining solutions for 3. < 4. For 
3. > 4 no solutions could be found which exhibited step-size independence. It appears, therefore, 
that use of the dusty-gas equations neither eliminates the singularity in the particle-phase density 
distribution nor alters the value of 3. at which it first appears. 

Finally, the complete equations [1 la-g] (modified dusty-gas model) were solved. It was found 
that this removed the singularity in the particle-phase density distribution. Some of the results are 
presented in figures 1-10. 

Typical computed results for the particle-phase density distribution are presented in figures l and 
2. Figure 1 shows data for 3. = 3.5, a value slightly smaller than ~r = 4. For e = 0 the approach 
of singular behavior is indicated by the large value of Qd observed at the sheet. For finite values 
of E, on the other hand, smaller values of Qd (0) are predicted. The decrease is dramatic. Away from 
the sheet the influence of E is minimal. Figure 2 shows results for 3. = 10, a value considerably larger 
than 3.,--4. The curve labeled E --0 has no physical meaning in this case. It corresponds to a 
particular step size adjacent to the sheet of 0.002. Reductions in this step size were found to lead 
to increases in the value of Qd(0) with this quantity never becoming step-size independent. This 
indicated the presence of singular behavior. The curves labeled E = 0.05 and c = 0.1 are based on 
computations which were found to be step-size independent. They illustrate the ability of the 
modified dusty-gas model to predict finite values of particle-phase density at the sheet for all values 
of 3.. 
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Figure 1. Particle-phase density profiles. 
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Figure 2. Particle-phase density profiles. 
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Figure 3. Fluid-phase tangential velocity profiles. 

10 

~ -  1.0 [ 
- 0.05 

17 

4 X - 0 . 1  

X = 4  

X = 1 0 ~  

2 

I = - - " ' ' T  I I I 
0 0.2 0.4 0.6 0.8 1.0 

- G o  

Figure 4. F lu id-phase no rma l  ve]oc i ty  profi les. 

In contrast to the situation discussed above, it was found that the corresponding predictions for 
the velocity components and pressure were virtually insensitive to the value of E. For the sake of 
brevity, these results are not shown graphically. 

Figures 3-8 show the velocity, pressure and density distributions for a wide range of 2. These 
results illustrate the ability of the modified dusty-gas model to predict solutions over the entire 
range of 2. In particular, figure 7 shows that the particle-phase density increases as 2 increases 
toward 2 ,  = 4 then decreases as 2 grows larger than 4. Thus the particle-phase density is uniform 
in both the frozen (~ a 1) and equilibrium (2 ,> 1) limits as it should be for this problem. 

Figures 9 and 10 present plots of the quantity -Gd  (0)Qd (0) vs 2 for various density ratios. This 
quantity is a measure of the collection efficiency of the sheet. This can be seen as follows. The 
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Figure 5. Particle-phase tangential velocity profiles. 
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Figure 6. Particle-phase normal velocity profiles. 
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Figure 8. Fluid-phase pressure profiles. 

quantity - - G d ( 0 ) Q  d(0)  is the actual dimensionless mass flux of  particles striking the sheet. If the 
particles were totally unaffected by the presence of  the fluid (2 = 0), the corresponding values would 
be Gd(0) = -- 1 and Qd(0) = 1, which would yield -Gd (0)Qd (0) = 1. Thus -Gd (0)Qd (0) is the ratio 
of the actual mass flux of  particles striking the sheet to the mass flux of particles which would strike 
the sheet in absence of  interaction between the fluid and particle phases. This is the usual definition 
of  collection efficiency. 

From figures 9 and 10 it can be seen that the collection-efficiency predictions based on the 
dusty-gas model are qualitatively correct but underprcdict the refined values based on the modified 
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Figure 9. Collection efficiency vs inverse Stokes number. 
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dusty-gas model, with the difference increasing with 2 and becoming especially noticeable for 2 > 4. 
Since singular behavior is absent in the modified dusty-gas predictions, the collection efficiency 
slowly decreases to zero as 2 increases, rather than vanishing abruptly at 2 = 4. It is believed that 
the results presented graphically in figures 9 and 10 may be the first to show this behavior. 

It should be mentioned that the numerical results presented in figures 1-10 constitute only a small 
portion of the data computed in the course of the present work. They were chosen as representative 
of trends observed in a variety of calculations. All numerical work was confined to small values 
of E (appropriate for suspensions of solid particles or liquid drops in gases.) For larger values of 
e, it would probably be necessary to include additional terms in [6a~l] (added mass etc.) to get 
a realistic model. For this reason only small values of E were considered. 

CONCLUSION 

This paper discussed two-dimensional steady flow containing a stagnation point generated by 
a stretching infinite sheet which bounds a half space of a two-phase particulate suspension. The 
balance equations for mass and linear momentum were combined with appropriate constitutive 
equations, expressed in component form, nondimensionalized and reduced to ordinary differential 
equations. The resulting nonlinear coupled equations were solved numerically by an iterative 
finite-difference method. Representative results of the computations were presented graphically and 
used to illustrate various interesting features of the solutions. Analysis of the computed results led 
to several conclusions. These are summarized below. 

First, numerical solutions of the dilute dusty-gas equations indicate the presence of a singularity 
in the particle-phase density above a critical value of the interphase momentum-transfer parameter 
(inverse Stokes number) 2. The singularity occurs at the fluid-phase stagnation point. The critical 
value of 2 appears to be 4. Thus the numerical solutions confirm the predictions of an approximate 
closed-form solution which is valid locally in the vicinity of the stagnation point. 

Second, numerical solutions of the dusty-gas equations indicate the presence of a singularity in 
the particle-phase density qualitatively similar to the one discussed above. The location and the 
critical value of the inverse Stokes number do not appear to be significantly affected. 

Third, generalization of the dusty-gas model to include the influence of the fluid-phase pressure 
gradient on the particle-phase momentum balance (i.e. use of the modified dusty-gas model) 
eliminates the singularity discussed above. This is because the effect of the pressure gradient is to 
apply an additional force to the particle phase which, in the vicinity of the sheet, is directed toward 
the sheet. This prevents the particle-phase normal velocity from vanishing at the sheet which, in 
turn, prevents the particle-phase density from becoming infinite at the sheet. For inverse Stokes 
numbers less than the critical value numerical work indicates that predictions based on the original 
and modified dusty-gas models are very similar. With the modified dusty-gas model it is possible 
to compute solutions over the entire range of inverse Stokes numbers. These solutions have the 
correct qualitative behavior. In particular, the particle-phase density distribution shows the proper 
progression from uniformity at 2 = 0 to maximum nonuniformity at 2 = 4 to uniformity at 2 = oc. 
Collection-efficiency calculations based on the modified dusty-gas model indicate that previously 
reported collection-efficiency results, obtained through the use of the dusty-gas model, are 
qualitatively correct. Both are in excellent agreement for 2 < 4. For 2 > 4 the modified model 
predicts a small collection efficiency while the original model predicts this to be zero. 

Some tentative comments concerning two-phase stagnation-point flows can be made based on 
the model problem discussed herein. First, it is not necessary to abandon the "dusty-gas" (small 
volume fraction, finite particle loading) concept to eliminate singular behavior in the particle-phase 
density. Inclusion of a pressure-gradient term in the particle-phase momentum-balance equation 
is sufficient to do that. Second, inclusion of the interphase momentum-transfer term in the 
fluid-phase momentum-balance equation (the neglect of which is obviously incorrect when the 
particle-phase density becomes sufficiently large) is not enough, by itself, to eliminate singular 
behavior in the particle-phase density. Third, use of the modified dusty-gas equations discussed in 
this paper is only one way to eliminate this singularity. Other methods should be investigated so 
that the most realistic model can be found. 
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A P P E N D I X  

By defining E¢ = F~, [1 la-g] can be rewritten in the equivalent form, 

Ec = GcFc + F 2 + x2Qo(Fc - Fd), 

F'~ = Ec, 

G'~= -- Fc, 

H '  = -- E~ + G¢Fc + X2Qd(ad -- G~), 

- F  2 + 2(Fd -- Fc) 
F~-- 

Go 
E(E¢ -- GcF¢) + 2(I + tCEQd)(G c -- Gd) 

G~= 
Gd 

and 

O'~= 

_ QdIE(Ec--GcFc) W2(IW~cEQd)(Gc--Gd) d 

Gd 

These are seven first-order equations, or a seventh-order system. 
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